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BACKGROUND

The use of the computer has revolutionized the field of electro-

chemistry. Computer control of electrochemical instrumentation allows the

application of an incredible range of sophisticated experiments, and provides

for both the collection and analysis of data. As in IR and NMR spectroscopy,

the application of computerized transform methods have been very productive

also.

One area in which the computer should play an increasingly important role

in the future is in the interpretation of electrochemical response and

defining appropriate action. Although these functions are not likely to be

taken over completely by the computer, there appear to be several areas in

which artificial intelligence methods may prove to be extremely useful tools

for the electrochemist.

Electrochemical systems are by nature multidimensional. A typical

current-voltage response is a function of not only the identity and bulk

concentration of an analyte, but also of temperature, time, solvent,

electrolyte, pH, electrode composition and dozens of other variables. While

humans have great difficulty in visualizing responses which are more than

3-dimensional, the computer is not limited by high dimensionality. And it is

this attribute which provides significant new insight to electrochemical data.

One branch of artificial intelligence which has already been applied to

problems in electroanalysis is computerized pattern recognition. Pattern

recognition techniques were developed during the 1960's primarily for the

solution of problems in character recognition and voice communication with

computers. Isenhour, Jurs, Kowalski and Bender (1,2) introduced the concepts

of pattern recognition to chemistry in the early 1970's, where most

applications have been in the field of spectral interpretation. Within

* electrochemistry, pattern recognition has been used for the detection of

severely overlapped peaks, classification of electroanalysis mechanism,

classification of chemical structure, determination of herbicidal activity,

and for quantitation of components producing overlapped voltammetric peaks.
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Because the applications of pattern recognition to electrochemistry have
now reached a significant level of achievement, and because routine

applications in commercial instrumentation now appear feasible with powerful

microprocessors, it is the objective to provide here a summary of achievements

that have occurred over the past decade. This summary is preceded by a brief

introduction to the principles of pattern recognition. More detailed

background information can be obtained from several excellent texts (3-8).
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PRINCIPLES OF PATTERN RECOGNITION

The ultimate goal of computerized pattern recognition is the characteri-

zation of unknowns. This is usually done in four steps: measurements,
preprocessing, feature selection and classification (see Fig. 1).

In the first step, one or more transducers produce an array of
measurements for each compound or chemical system to be determined. This

array of measurements is called a pattern. An electrochemical example of a
pattern would be a cyclic linear sweep voltammogram (an array of current

measurements). Since a pattern may be made up of measurements from more than
one transducer, these measurements may vary widely in magnitude and be in

different units.
In the preprocessing step the measurements are scaled to normalize

variations in magnitude, and mathematical transformation may be applied to
produce new descriptors called features which are more useful in classifying

unknowns. The transformation may be as simple as multiplying each measurement
by a scale factor (weighting), or it may make features from linear combi-

nations of the original measurements. The Karhunen-Loeve expansion is an

example of one such transform (3). The Fourier transform (9) and the Hadamard

transform (10) are also commonly used in the preprocessing of electrochemical

data. Since an infinite set of features could be extracted from any set of

measurements, the knowledge of the computer operator is important in this
stage of pattern recognition. For example, if one wanted to classify cyclic

voltammograms as to their reversibility, it would be advantageous to make sure
that features indicative of peak separation were included.

It is desirable to have as few features as possible for computational
simplicity and statistical confidence in classification (11). Thus, the third

step is to eliminate as many features as possible without adversely affecting

classification. The criterion for rejecting or retaining a feature might be

"chemical intuition", a figure of merit such as the Bhattacharyya distance
(4), or performance in actual classification. Unfortunately, the only way to
be sure of picking the best subset of the original features is to try all
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possible combinations. Even with high-speed computers, this is not often

feasible from the standpoint of time, so a sub-optimal approach is most always

used.

In the last step of pattern recognition, each compound or chemical system

is identified by assigning it to some predefined class. The classifications

are almost always made by considering the location of the patterns in a

hyperspace formed by using each of the features as an axis. This is

illustrated in Fig. 2. Two common classifiers which work on this principle

are the linear discriminant function and the-* nearest neighbor (kNN) rule.

In the case of the linear discriminant, a d-dimensional decision surface

is constructed so as to define class boundaries. This surface is a line for

d=2, a plane for d=3 and a hyperplane for higher dimensionalities (Fig. 3).

The decision surface is defined by a weight factor, W, which is normal to the

surface and passes through the origin. The position of any pattern with

respect to the decision surface can be found by taking the dot product, S, of

the weight vector and the vector, X, describing the pattern's position.

n
s = W "X = IWl IXicos e = Z wix. + W

i=l 1 1 n+l

If the product is positive, the pattern lies on the same side of the surface

as the weight vector; if negative, it is on the opposite side; and if zero,

the pattern falls directly on the decision surface. Assigning class one

arbitrarily to the positive side, and class two to the negative side, we have

the following criteria for pattern classification:

s > 0 for class one

s < 0 for class two

s = 0 no decision

There are many methods available for positioning ("training") the

decision surface (15). The Linear Learning Machine has been used extensively

in chemical applications, but it is appropriate only when classes are
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FIG. 2. Two pattern classes in a 3-dimensional feature space.
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completely linearly separable. If classes are not linearly separable, a more

sophisticated training algorithm (12,13) or a different type of classifier is

necessary.

The k nearest neighbor classifier assigns each pattern to the class which

has the greatest representation among its k nearest neighbors. For two class

problems, k is set to an odd integer to avoid the problem of tie votes.

Euclidian distance, D, is usually taken as the measure of nearness. Equation

2 gives the Euclidian distance between patterns "a" and "b" in an

n-dimensional feature space.

n 22

Dab = (Xia - Xib )2 (2)
i=l

Other classifiers have been designed, but have not been used in

electrochemical applications (5,14,15). The linear discriminant or the k

nearest neighbor classifier will work well in most situations. The linear

discriminant is particularly well suited to time critical decisions. Although

the positioning of the discriminant may be a long process, classifications of

unknowns are very rapid and require little computer memory. Nearest neighbor

classifiers are better suited to multiclass problems and spaces in which the

class distributions are oddly shaped. Classification is much slower, however,

and a computer using this method must have a large amount of memory or have

rapid access to a mass storage device.

The four steps just described are usually first carried out on a set of

known patterns called a training set. The true identity of each pattern is

compared to the identity assigned to it in the classification step and the

results are fed back into one or more of the previous steps for error

correction. This feedback process is called supervised learning and is the

crux of machine intelligence.

Once the computer has learned to distinguish between different classes of

patterns in the training set satisfactorily, it is tested with a different

group of known patterns called a prediction set which represent the same

classes included in the training set. If patterns of the prediction set are

-8-



also correctly classified, then unknown patterns may be analyzed as long as
each belongs to one of the classes represented in the training set. If this

cannot be assured, then the computer should be able to decide if a new pattern

lies within its previous range of experience.

The specific operations which are executed in the four steps of pattern

recognition are dependent on the type of data which is being analyzed and the

classifications which are desired. Each step will be described more fully
here in relation to several electrochemical problems.

I

4
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APPLICATIONS OF PATTERN RECOGNITION TO VOLTAMMETRY

DETECTION OF OVERLAPPED PEAKS

It has been argued that one area in which automatic classification is

conspicuously unsuccessful is in deciding how many narrow individual bands

contribute to an observed wide, unresolved maximum on, for example, an

absorbance-wavelength envelope (16). It has been pointed out, that since the

problem is linear, it is always possible to choose a sufficiently large number

of narrow bands which by superposition reproduce the observed maximum with any

desired precision. This argument is not necessarily relevant for

investigations of peak multiplicity in electroanalytical data. Although

voltammetric methods are not particularly selective - i.e., overlap problems

occur frequently - they are quite restrictive. That is, it is often possible

to limit the number of electroactive components which can possibly contribute

to a voltammetric peak by proper selection of chemical or instrumental

conditions. Thus, the pattern recognition approach can become of great

utility to the detection of overlapped voltammetric peaks.

Many voltammetric waveshapes, such as those obtained in linear sweep

voltammetry, are broad and asymmetric. Visual detection of peak multiplicity

is difficult when the separation of overlapped peaks is less than 50 mV

(Fig. 4). Plotting the second derivative of the current can aid in the visual

detection of two-component (doublet) voltammograms, but at separations of less

than 14 mV, inspection of the second derivative gives no indication of a

second component. For separations less than 14 mV pattern recognition

provides the only effective technique for multiplicity classifications.

The initial work in this area used a training set consisting of Cd(II),

In(III) and Sb(III) linear sweep voltammograms (17). In(III) and Cd(II) were

strongly overlapped. A linear discriminant was able to detect the presence or

absence of any component for a wide variety of concentrations. Classification

accuracy was well above 90%.
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The main problem with the use of the 3-component experimental training

set was that the method lack generality. Only Cd-In-Sb analysis could be

done. No effort was made to extract features of an overlapped system that

could be universally applied.

Theoretical training sets have been used to much advantage in

generalizing singlet-doublet recognition. By creating synthetic linear sweep

voltammograms with a wide range of characteristics, it has been possible to

anticipate much of the real data that have been encountered. Synthetic

doublet-singlet training sets have been generated for highly overlapped

reversible, quasi-reversible and irreversible systems. The range of the

electrochemical parameters which described the training sets is given in

Table 1.

The use of synthetic data to classify real data does have some

drawbacks. Voltammograms generated from theory are free from noise, chemical

interferences and instrumental distortions. If this is not taken into account

in the feature selection and scaling process, features may be chosen from the

theoretical set which are particularly susceptible to these problems in

experimental systems. This difficulty has been minimized by adding synthetic

noise to the theoretical data (18), or by using training sets which contain a

mixture of both real and synthetic data.

Another problem with using synthetic data to anticipate a wide range of

unknown systems is that an excessive number of training set patterns may be

required to define the structure of a feature space well enough for perfect

classification. In singlet-doublet pattern recognition, we discoverea that

real patterns sometimes fell into empty regions of feature space even when the

training set contained several thousand synthetic patterns. Again, the

inclusion of real data in the training set was helpful (19). The wide range

of synthetic aata in the training set allowed the classification of totally

new voltammograms, and the real training set voltammograms increased the

classification accuracy for patterns which fell within the fairly restricted

regions of feature space where real data is normally found (Fig. 5).

Two types of features have been used in doublet-singlet recognition. The

first type is based on the symmetry of the voltametric waveform or its

derivatives. Typical features of this type are shown in Fig. 6.

-12-



TABLE 1. Parameter ranges for synthetic SEP doublet/singlet data base (taken

from reference 18).

.01, .02, .05, .10, .20, .50, 1.0, 2.0, 5.0, 10.0

.3, .4, .5, .6, .7

na .9, 1.0, 1.1; 1.8, ..., 2.2; 2.7, ... , 3.3

Ep2-Ep1  4, 6, 8, 10 mV

•*b

C /C2  10:1 to 1:10

a) ... represents increments of .1

b) C = 0 for singlets, all other values chosen at random

-13-
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were made at several scan rates and concentrations producing the spread

of the patterns within each cluster. S's correspond to theoretical

singlets in the same feature space. Taken from reference 19.
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One hundred and thirty-three (133) such features have been defined and are

referred to collectively as the SEP feature set (18).

An alternative set of features for describing the shape of a voltammogram

may be obtained through the use of the Fast Fourier Transform (FFT) (Fig. 7).

The low frequency components of the transformed data contain most of the

fundamental shape information, while the higher order coefficients represent

noise information and may be disregarded (18).

Of the two feature sets used, the SEP features have the advantage in

classification of patterns outside the limits of the training set. Fourier

transform coefficients on the other hand, gave consistently higher

classification accuracies for data within the training set limits, indicating

that they are more sensitive to minute differences in shape such as are seen

between singlet and highly overlapped doublet voltammograms.

The kNN classifier performed better than the linear discriminant in the

recognition of singlets and doublets in the synthetic training sets. This is

due to the fact that the singlet class distributions are oddly shaped and

cannot be easily partitioned from the doublets with a linear discriminant.

Figure 8 shows a plot of a group of synthetic singlets as they are distributed

by two Fourier transform features that were useful in classification. The

doublets, which have not been plotted, are encircled by the singlet curve.

ON-LINE VOLTAMMETRIC PATTERN RECOGNITION

Pattern recognition of voltammetric data has the greatest value when

applied in an on-line fashion. Rapid classifications allow the optimization

of measurements. Instrumental distortions can be detected and corrected

before an entire set of bad data is recorded, and unanticipated

electrochemical behavior can be recognized and investigated. In our

laboratory, single-doublet pattern recognition was the first application to be

implemented on-line, so that voltammetric assays could be constantly monitored

for unexpected highly overlapped peaks. Subsequently, all of the voltammetric

pattern recognition studies in our laboratory were conducted on-line.

-16-
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We have found computer networking to be very helpful when doing pattern

recognition on-line. In our laboratory, three Hewlett-Packard mini-computers

and two microcomputers were available for electrochemical experimentation.

The fastest minicomputer was equipped with a 5 Mbyte disk drive, a printer,

plotter and other peripherals, and was interfaced to the other mini's via

high-speed, bidirectional, 16-bit paralleled interfaces (Fig. 9). The

microcomputers could be linked to any of the three minicomputers with RS-232

serial interfaces. This network allowed the tasks of data collection and

analysis to be delegated efficiently. The fast, well-equipped computer

performed the pattern recognition calculations while the other computers were

used for experimental control. Using this network, a voltammogram could be

transferred from an experimental control computer to the pattern recognition

computer, stored on disk, analyzed for multiplicity, and the results returned

to the control computer in 12 seconds (20). Other analyses (structural,

activity, mechanism) could be conducted with similar response time.

DEVIATION PATTERN RECOGNITION

Hypotheses concerning the mechanisms of electrode reactions can often be

formulated in terms of equations relating a measurable quantity such as a cell

current to an independent variable - e.g., time or applied potential.

Provided that the equation adequately accounts for the experimental data,

kinetic parameters can be derived by fitting the model equation to the data by

regression. The chemist can subsequently apply statistical methods such as

the F-test to judge the validity of a proposed mechanism.

Although statistical tests do not guarantee that a proposed mechanism is

correct, they do provide a means of rejecting an incorrect hypothesis.

Unfortunately, once a test has resulted in rejection, no guidance to a better

understanding of the experimental evidence is orovided.

Meites and coworkers have introduced the "deviation plot"/"deviation

pattern" concepts to overcome this difficulty (16,21,22). In any experiment,

there may be systematic as well as random errors; moreover, in the

interpretation of an experiment, systematic errors may be introduced by

assuming a model mechanism which happens to be wrong. It is often possible

-19-
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to eliminate or correct for systematic experimental errors. In such cases,

the features of a "deviation plot" may assist the experimenter not only to

decide whether his hypothesis is wrong, but also give him guidance to select a

more probable theory.

Corresponding to a given hypothesis, a number, m, of experimental data

points, ym,meas' are used to obtain a fit of the model assumed, and the

best values of the parameters - rate constants, half-wave potentials, etc. -

are calculated. Subsequently, the dependent variable, ym,calc' of the

experiment (e.g., the current measured in a polarographic experiment) is

calculated based on the hypothesis and the parameters thus determined. The

deviation plot is then obtained by plotting, as a function of the independent

variable, the quantity: AYm = (ym,meas - Ym,calc )/S' where S is

the standard deviation from regression analysis.

If data, free from variable systematic errors, have been used to obtain a

fit of a model that describes them correctly and completely, the deviation

plot will consist of a set of points randomly scattered around the horizontal

axis. If, however, the equation used for its construction is wrong, the

deviation plot will exhibit some systematic variation (a "deviation pattern")

superimposed on the random noise. In such cases, the general features of the
plot may guide the chemist to select a better hypothesis, if a library of

"deviation patterns" is available to him. Such a library should contain

entries giving the (noise free) theoretical "deviation patterns" obtained by

fitting a model to theoretical data calculated by assuming a different model.

To the electrochemist, such a library greatly facilitates the work involved in

selecting and testing hypotheses. Figure 10, taken from reference (16),

illustrates a sample deviation pattern obtained by fitting a model, describing

a single polarographic wave, to theoretical polarographic data corresponding

to two merging polarographic waves.

If the chemist has assumed that a polarographic wave originates from one

electroactive substance, he can test this hypothesis by construction of the

corresponding deviation plot. If the plot exhibits a systematic variation, he

can reject the hypothesis. Moreover, if this variation resembles that of the

deviation pattern of Fig. 10, there is evidence that he should test the

-21-
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hypothesis that two electroactive species are present. These tests and the

recognition of deviation patterns can be carried out by a digital computer

(16,21), which attempts to assign a given deviation plot to an entry in the

library of deviation patterns. Once the scientist has assembled his own

library for his field of interest, he can rapidly decrease the number of

possibilities that have to be further investigated for the interpretation of

data from new experiments (16). The limitations of the approach are, of

course, that no information is provided on any hypothesis not represented in

the library - and, like the F-test, the method cannot give any guarantee that

a hypothesis is correct.

QUANTITATIVE VOLTAMMETRIC ANALYSIS

Pattern recognition produces discrete classifications, so it is not by

* nature a quantitative technique. There are situations, however, when the only

information desired is whether or not an unknown is within a desired range of

concentrations. Pattern recognition may be used for rapid determinations of

this type. All patterns in the training set which are within the desired

-concentration range can be assigned to one class, and the rest of the patterns

to another, allowing Jlassifiers to be trained by traditional methods. More

exactly, quantitative estimates may be obtained by considering the distance of

a pattern from a decision surface if proper training procedures are employed.

*For instance, a linear discriminant can be trained to recognize if a component

is contained within a mixture. If a mixture pattern falls on the side of the

discriminant which indicates that a particular component is present, the

training can also be such that the dot product of the weight vector and the

* mixture pattern gives the concentration of that component.

Bos ano Jasink. (23) have used linear discriminants to facilitate the

determination of cadmium, lead and thallium down to 10-8 M by anodic

stripping voltammetry at a hanging mercury drop electrode. The three metals

* -were preconcentrated in the mercury electrode by electrolysis at -900 mV vs.

S.C.E. in a non-complexing medium and subsequently stripped off the electrode

by an anodic scan (differential pulse mode). Voltammograms obtained in this

manner exhibit severely overlapped peaks due to the stripping of thallium and

-23-



lead and a less pronounced overlap of the thallium and the cadmium peaks

(Epeak approximately -380, -445 and -580 mV vs. S.C.E. for lead, thallium

and cadmium, respectively). Thus, large concentrations of thallium may

prevent an accurate determination of lead and cadmium by conventional methods.

To obtain quantitative results using the pattern recognition approach,

experimental single-component anodic striping voltamograms, taken at seven

different concentrations, were used to train three linear discriminants, one

for the detection and quantification of each component. The discriminants

were positioned by a least-squares algorithm, which minimized the error in

concentration predictions. The heavy metal concentrations were predicted

quite accurately for selected solution compositions in the concentration range

10-6-0 -8 M. Even in such cases, where the peak due to 5xlO "8 M lead

completely disappears under the peak due to 10-6 M thallium, the predictions

of all three metal concentrations were quite accurate (10-20%). Although the

study ignored the possibility of selectively shifting the reduction potentials

of lead and cadmium sufficiently negative to avoid interference, the

principles of the approach could prove useful to the electrochemist.

Ichise et al. (24) have used a similar procedure to quantify lead(II),

thallium(1), cadmium(II) and zinc(II) in staircase voltammetry. An "analog

feedback" learning machine approach was used to position the linear

descriminant. The computer algorithm of the analog linear learning machine is

very simple: Contrary to the digital linear learning machine, it has no

decision part, and it is trained by the feedback of a simulated analog output

from an adaption part. The price paid for this simplicity is, however, an

increased time necessary to predict the composition of an unknown sample. The

approach has been shown to produce rather accurate predictions for samples

containing lead(II), thallium(I), cadmium(II) and zinc(II) at the l0 3 M

concentration levels. For the practicing analyst, who is often interested in

the determination of these elements at the nano- to micromolar levels, the

approach could be valuable if applied to stripping analysis. At present, itU
seems very probable that if the efforts involved in developing pattern

recognition methods are accompanied by efforts towards optimizing the

experimental conditions, a useful approach to quantitative electrochemical

analysis may evolve.
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CLASSIFICATION OF ELECTRODE PROCESSES

One of the most exciting uses of pattern recognition in electrochemistry
has been in the examination of electrode processes. Many processes can occur

at the electrode-solution interface besides the simple transfer of electrons.

Electroactive species may be adsorbed, form amalgams, or undergo a great
variety of chemical reactions before or after electron transfer. These

complications may have distinct effects on the shape of an electrochemical
waveform which can be used by a pattern recognition analysis to characterize

the mechanism of the electrode reaction.

Cyclic linear sweep voltammnetry can generate a large amount of

fundamental mechanistic information. The reverse sweep allows the examination
of products generated in the forward sweep, and can detect processes which

might be occurring to remove these products from the solution. Many cases

have been treated theoretically allowing the generation of a broad synthetic

training set. For these reasons it has been used by us to provide a data base

for mechanistic pattern recognition. The electrode processes which have been

examined by pattern recognition are listed in Table 2 (25). Figure 11

illustrates the kind of subtle variations in wave shape associated with

different mechanisms.

The features which are traditionally used in the determination of

mechanism with cyclic voltammetry are the separation of the cathodic and

anodic peaks, the ratio of the peak currents, and variation of the peak

separation and current ratio with scan rate. Comparison of these features to
those expected from theory will in many cases confirm or reject a proposed

mechanism, and for this reason these were the first features considered for
pattern recognition analysis. However, there are some cases in which these

features are so similar for several different plausible electrode processes
that no decision can be made. The applicability of pattern recognition in

such cases has been tested (25) using a training set which contained 885
synthethic patterns representing all of the electrode processes listed in
Table 2. Since previous studies indicated that Fourier transform features

were very sensitive descriptors of curve shape, they were included in the

training process along with the more traditional features.

-25-



TABLE 2. Electrode processes for theoretical training set (taken from
reference 25).

Abbreviation Process

Electrode Phenomena:

Uncomplicated Reversible Uncomp 0 + ne - R

kf

Quasireversible QR 0 + ne R
tb

Amalgam Formation Amalg 0 + ne R(Hg)

Weak Adsorption Ads 0ad s + ne R

Coupled Chemical Reactions:

K
Preceding CE Z 0

0+ne R

Reversible Following EC 0 + ne Rrev

K
R Z

Irreversible Following EC. 0 + ne + R

irr 4

kfR +f Z

Catalytic Following ECcat 0 + ne + R

k fR +f 0
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Through the use of an iterative feature selection procedure and the kNN

classifier the computer learned to classify training set patterns with 96.7%

accuracy. Twelve experimental systems were then run at a variety of scan

rates to test predictive accuracy. Five systems were classified correctly

every time while most of the rest had classification accuracies above 90%

(25).

Perhaps the most significant aspect of this work, however, is that only a

single voltammogram is required to achieve accurate classification. This

should be contrasted with the need to examine behavior trends over many

experiments for conventional mechanistic studies. Nevertheless, the

single-voltammogram classification procedure should be used primarily as a

quick diagnostic, to be followed by more detailed study. When viewed in this

perspective single-voltammogram classification becomes a useful tool for

screening and categorizing large numbers of samples.

The pattern recognition analysis had several interesting implications.

One surprise was that none of the traditional features calculated from peak

separations and current ratios were retained in the feature selection

routine. This suggests that although these parameters are easily calculated,

their exclusive use in interpretation of cyclic linear sweep voltammograms is

not justified. The necessity of using a computer precludes the consideration

of discrete Fourier transform coefficients in all applications, but it might

be possible to define some set of easily calculated features which are more

sensitive to electrochemical mechanism than peak separations and current

ratios.

Another finding was that experimental cyclic staircase voltammograms

could be used with the theoretical linear sweep training set for

classification of the electrode process. Although the similarity between

linear sweep voltammograms and staircase voltammograms obtained using a

sampling parameter of 0.7 has been noted before, the successful classification

of the staircase data shows that the two techniques are nearly identical for a

variety of electrode processes. The staircase technique is superior

experimentally since the double layer charging current can be minimized, but

it has not often been used due to the small number of systems which have been

examined theoretically.
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An added advantage in using pattern recognition techniques based on large

theoretical data sets is that semiquantitative estimates of the parameters

describing the electrode process can be obtained as by-products of the kNN

classification process. When an unknown pattern is matched to a synthetic

pattern, the parameters that were used to generate the synthetic pattern can

be assigned to the unknown. DePalma and Perone (26) have used this technique

in a number of uncomplicated systems to determine the number of electrons

transferred; *, a measure of the irreversibility; and a, the transfer

coefficient.

ELECTROCHEMICAL STRUCTURAL AND ACTIVITY CLASSIFICATIONS

The classification of chemical structure using electrochemical

techniques, is a challenging problem. Voltammetric responses lack fine

structure and probably will never compete with IR or NMR spectroscopy in

qualitative analysis. The complex dependence of an electrochemical response

on many variables, and theoretical problems in relating structure to

electrochemical activity, make qualitative voltammetric analysis even more

formidable.

Even though the difficulties in qualitative electroanalysis are great,

the rewards of developing a reliable means of structural identification

through electroanalysis would also be great. Due to recently developed

miniaturization techniques, electrodes are the most promising probes of in

vivo chemical species. Carbon fiber electrodes may be implanted within a

single cell or neuron (27). Electrochemical detectors in liquid

chromatography are becoming very important because of their high sensitivity

and selectivity. Quantities of electroactive material in the picogram range

have been analyzed. Osteryoung, et al. (28) have recently demonstrated the

feasibility of scanning the potential of a liquid chromatographic

electrochemical detector, so the development of qualitative voltammetric

methods would open up the possibility of the characterization of eluants that

are 1O00 times less concentrated than those which can be analyzed by

spectroscopic techniques.
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Linear-free-energy relationships have generally been the most useful

expressions for relating structure to electrochemical activity in the past. A

substituent group will have a characteristic effect on the free energy of an

electrochemical reaction occurring in its vicinity. This effect may occur

through electron withdrawal, electron donation, or it may be steric in

nature. In any case, the effect may be quantified through the use of Hammett

substituent constants. For a given class of electrochemical reactions, there

will be a linear relationship between E and the substituent constants a

(29).

There are two main problems in the use of linear-free-energy

relationships. The first and largest problem is the determination of the

reaction series to which an unknown belongs. Such a deduction from

electrochemical behavior is not straightforward. Furthermore, there may be

several reaction series which may be constructed for a class of compounds
depending on solution conditions. The slope of the El/2 vs a plot would

be different at high pH's due to a change in the mechanism of reduction.

The second main problem is that there is often not enough E

separation for different substituents or substituent combinations to allow for

confidence in identification, especially when experimental reproducibility is

low due to uncontrolled matrix effects. The consideration of more information

than E /2 would clearly be helpful.

Because pattern recognition is well suited to the consideration of large

amounts of information and to making use of obscure relations, we have applied

it to chemical structure identification from electrochemical data. The main

questions have been what information should be collected and how much?

Burgard and Perone (30), used staircase voltammetry to analyze 29

compounds belonging to four different electroactive group/skeleton

combinations. The classes examined were aromatic-nitro, aliphatic-nitro,

aromatic-aldehyde and aromatic-aliphatic-ketone. These classes were almost

completely separated on the basis of peak potential, but since this feature

alone cannot be cunsidered sufficient for many identification problems, the

voltammograms were examined for any shape information which might characterize

a particular electroactive group or the skeleton to which it was attached. It

was found that the change in peak shape with scan rate produced fair
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classifications (70% correct), but that complete separation of the classes was

not possible for the experimental conditions and compounds which were chosen.

The results suggested that the information content of the electrochemical data

base should be increased for more reliable structural classifications.

Ichise, Yamagishi and Kojima (31-33) have proposed the simultaneous

determination of complete E-i-c and C d-E-c patterns (c = surface

concentration) and have published several papers on instrumentation and data

compression algorithms for reaching that goal. E-i-c patterns were generated

by applying a pseudo-random waveform to the cell and monitoring the current

response. The surface concentration of the depolarizer was calculated from

the current in an analog fashion with an "s"1/2 module" which eliminated the

effect of diffusion. Cdl was obtained by applying a high frequency 10 mV

sinusoidal wave to the cell and measuring the amplitude of the 90 degrees

out-of-phase component of the current.

The idea of obtaining double-layer capacity information may be fruitful.

The capacitance of the double layer is dependent on adsorption of the analyte,

and the strength and potential dependence of adsorption may indicate the

presence of certain functional groups (34). w-electron interaction between

adsorbed molecules and the electrode surface has a characteristic influence on

the adsorption behavior of organic substances (34), and specific interactions

between the analyte and some other molecule or ion within the double layer may

also be helpful in identification (35,36). Some adsorbed organics will

inhibit the reduction of metal ions, while others, through the so called

"cap-pair" effect will accelerate reductions (37).

The use of a potential-step technique such as cyclic staircase

voltammetry represents a simple alternative to Ichise's method (32) of

obtaining information on both adsorption and electron transfer kinetics. The

current decay immediately after a step is primarily capacitive while current

at later times is almost totally due to electron transfer reactions. Thus,

measuring the current at several times during each step and by changing the

scan rate, information on both the kinetics of the electrode process and the

differential capacity can be obtained with a single sweep.

As is true with cyclic linear sweep voltammetry, the reversal of the scan

is important in detecting chemical reactions which succeed the electron
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transfer step. Immediate repetition of a cyclic scan will detect any products

which may have been generated in the reverse scan of the first cycle.

One additional parameter which can be explored is the "drop hang time".

This refers to the time period between the creation of a stationary mercury

drop and the beginning of the first staircase scan. During the waiting time,

a potential can be applied. This variable was investigated in our work to see

if there was any class specific information in the kinetics of adsorption.

Another source of structural information is the electrochemical response

of the analyte to chemical perturbations. Changes in solution conditions have

been useful in classical studies of structure-activity relationships.

Exploration of a variety of solutions will help define the best conditions for

particular classification problems.

All of the experimental and solution variables which have been examined

systematically in our classification studies are listed in Table 3. The

4 determination of the effect of each of the seven variables is difficult

without good experimental design. To characterize all main effects and all

interactions one could arrange the experiments by a factorial design (38).

For the seven variables considered here, 128 runs would be needed for each

compound. The large number of runs can be avoided by using a saturated

fractional factorial design (39) in which the main effect of all seven

variables can be investigated in only eight experiments. By running a second

fraction, in which all variable levels have been reversed from their state in

the first fraction, all confounding between the main effect of variables and

the interaction of two variables will be eliminated. Higher order

interactions (the interaction of three or more variables) may still be

confounded with the main effects, but in most cases such interactions are

relatively small in magnitude.

In our work (40), a fractional factorial design was used in which all of

the main variable effects have been de-aliased as described above. In

addition, one of the experiments run early in the analysis of each compound is

repeated near the end of the analysis to determine instrumental precision and

to detect any decomposition of the sample. This makes a total of 17

voltammograms which must be taken for each compound. These experiments yield

17 current-voltage and 17 differential capacity curves for each compound.
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TABLE 3. Variable levels for factorial design to study structural effects on
voltammetric data.

VARIABLE
NUMBER VARIABLE LOW LEVEL (-) HIGH LEVEL (+)

X, % Ethanol 0.5 % 9.5 %

X2  pH 8.0 5.1

X3 Surfactant 01.4 x 1O- 5 M
Concentration

X4  Number of Cycles 1 2

X5  Scan Rate 0.25 V/s. 1.0 V/s.

X6  Drop Hang Time 0.2 s. 30 s.

X7  Sampling Time 30% of step end of step
(Q'=.7) (0'=.007)
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Graphical analysis of the error involved in the calculation of variable

effects was done for several nitroaromatics and nitrodiphenyl ethers (40). It

(was discovered that all of the variables chosen for study had significant

effects on the Faradaic responses of the compounds examined. The magnitudes

of the effects and the shapes of the effect curves were quite different,

indicating that redundant information was not recorded. All of the variables

also had a significant effect on the differential capacity curves of strongly

adsorbed species, but some of the effects could not be distinguished from

noise for more weakly adsorbed compounds. Only pH, number of cycles and %

ethanol had a significant effect on the capacitance response of both weakly

and strongly adsorbed organics.

Since the variables chosen and the levels over which they were changed

seemed to be appropriate for most compounds from a signal-to-noise

perspective, the variable effects were further examined for any information

4 which might be useful in structural classifications. Forty-five compounds

representing three major structural classes were chosen, and features derived

from the variable effects were tested for predictive ability (41). Class 1

consisted of 19 nitroaromatics contaning a single benzene ring; Class 2

contained nine nitrodiphenylethers, and Class 3 consisted of 17 azo

compounds. The classes were completely overlapped in potential, and all

compounds were reduced by the same number of electrons, so the identification

of the classes from their voltammetric behavior was not a trivial problem.

The pattern recognition analysis revealed that all of the variables

produced structural-specific information. Most of the information was found

in the Faradaic responses. Changes in the Faradaic responses with the number

of cycles gave the highest classification accuracy of 93.3%. Scan rate

4 changes yielded 89%, while pH, surfactant and drop hang time all produced

classification accuracies of 84%. Changes in a Faradaic response with %

ethanol and sampling time appeared to contain the least structural

information, giving classification accuracies of 66.7 and 75.6%,

A respectively. As was expected from the signal-to-noise analysis, the effects

of the several variables on the capacitive responses were much poorer

structural predictors. Classification accuracies ranged between 60.0 and

75.6%.

I
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Although changes in differential capacity responses caused by changes in

the experimental variables were not very helpful, the shapes of differential

capacity curves which were obtained under the same experimental conditions

were excellent structural descriptors. Using shape features derived from

differential capacity curves taken under one set of experimental conditions,

93.3% classification accuracy was achieved. Four other sets of experimental

conditions yielded over 90% classification accuracy.

An interesting sidelight of the organic structural classification study

was that herbicidal activity could also be predicted (41). The

nitrodiphenylethers could be diviaed into compounds which were strong

herbicides and those compounds which showed little or no herbicidal activity.

Both Faradaic and capacitive responses could be used to separate these classes

for over half the experimental conditions examined.

The ability of voltammetric responses to predict the herbicidal activity

can be explained by the mechanism of herbicidal action for the

itrodiphenylethers. It is thought that these compounds are involved in the

initiation of destructive free radical reactions with the phospholipid

molecules which make up cellular membranes (42). Since the first step in the

reduction of aromatics at the mercury electrode also involves the formation of

radical species (43), some similarity between herbicidal activity and

voltammetric behavior can be expected.
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CONCLUSIONS

It is clear that, at this point, the feasibility and performance of the

methods which combine pattern recognition and electrochemistry (PR/EC) have

been established. The present interpretive capability exceeds considerably

what could be achieved by more conventional methods. Computerized

identification of severely overlapped peaks, characterization of heterogeneous

kinetics or mechanism of the electrode process, and qualitative identification

of analytes by structural type, on the basis of interpretation of a single

voltammogram and conducted rapidly by an on-line laboratory computer, are

examples of unique achievements of PR/EC. Figure 12 summarizes this current

capability. The important question now is in what directions future work will

go.

There are some obvious future developments or extensions of the

capabilities already demonstrated. Applications of PR/EC to qualitative

identification of liquid chromatographic effluents using scanning

electrochemical detection should be very fruitful. Still another area of

application would be in vivo monitoring of biological fluids with PR/EC.

In addition to the above extensions, it would appear worthwhile to

investigate the applicability of pattern recognition to other electrochemical

measurements. For example, we have already shown that battery lifetime

prediction could be achieved by using pattern recognition and cluster analysis

methods to interpret charge/discharge data from new NI/Cd batteries (44). It

would be worthwhile to investigate the applicability of pattern recognition to

the interpretation of transient battery test methods with respect to
establishing state-of-charge, predicting imminent failure, identification of

failure mode, lifetime prediction, etc.

Another intriguing area of investigation encompasses "cybernetic

instrumentation" -- i.e., laboratory instrumentation aided by artificial

intelligence (A.I.). The goal would be to utilize the interpretive powers of

PR/EC to develop adaptive control functions for voltammetric instrumentation.

Of course, these same principles can be applied subsequently to other

instrumental systems, but we have already demonstrated that voltammetric
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techniques provide a favorable proving ground for on-line pattern recognition

studies. Because we have also developed the capability for sophisticated

computer control and feedback in voltammetric experimentation (45,46), it

would appear feasible to develop AI-guided electrochemical instrumentation.

This work supported by the Office of Naval Research (Purdue University) and the

U.S. Department of Energy Contract W-7405-Eng-48 Lawrence Livermore National

Laboratory.
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